Face Selectivity in the 1,3-Dipolar Cycloaddition Reactions of Benzonitrile Oxide with 5-Substituted Adamantane-2-thiones and 2-Methyleneadamantanes ${ }^{\dagger}$

Wen-Sheng Chung,*, ${ }^{*}$ Tzong-Liang Tsai, \ddagger Chia-Chin Ho, \ddagger M. Y. N. Chiang, ${ }^{\S}$ and W. J. Ie Noble ${ }^{\perp}$
Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30050, Republic of China, Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan 804, Republic of China, and Department of Chemistry, State University of New York, Stony Brook, New York 11794

Received February 27, 1997^{*}

Abstract

The 1,3-dipolar cycloaddition reactions of benzonitrile oxide with 5 -substituted adamantane-2thiones (2-X) and 2-methyleneadamantanes (3-X) produced two geometrically isomeric $\Delta^{2}-1,4,2-$ oxathiazolines (5-Xs) and two Δ^{2}-isoxazolines (6-Xs), respectively. The substituent was varied from fluoro, chloro, bromo, to phenyl. X-ray single-crystal analysis confirmed the configuration of (Z)-5-F. The product formation bias resulting from the favored attack of nitrile oxide on the zu-face is discussed in terms of transition-state hyperconjugation and frontier molecular orbital theory.

1,3-Dipolar cycloadditions offer a convenient one-step route for the construction of a variety of complex fivemembered heterocycles that are synthetically useful compounds. ${ }^{1}$ Nitrile oxide cycloadditions to terminal alkenes proceeded regioselectively to give 5-substituted Δ^{2}-isoxazolines as single products. ${ }^{1 b}$ The cycloaddition of nitrones and nitrile oxides to thiones leading to $\Delta^{2}-$ 1,4,2-oxathiazolidines and Δ^{2}-1,4,2-oxathiazolines, respectively, have also drawn much attention recently. ${ }^{2}$ Because of their extremely high reactivity toward 1,3dipoles, thiones have been called superdipol arophiles by Huisgen. ${ }^{2 a, b}$

5-Substituted adamantan-2-ones 1-X and their derivatives have proven to be useful probes in research aimed at understanding the electronic factors in face selection. ${ }^{3}$ Studies by le Noble et al. ${ }^{3 a}$ of a variety of reactions indicate that the reagent prefers to attack the face that is antiperiplanar to the more electron-rich vicinal bonds (zu and en face preference in $\mathbf{1}$ when \mathbf{X} equals an electronwithdrawing and electron-donating group, respectively). Their results have been reconciled with Cieplak's transi-tion-state hyperconjugation model. ${ }^{4}$

1-X, $\mathrm{Y}=\mathrm{O}, \mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ and Ph $\mathbf{2}-\mathrm{X}, \mathrm{Y}=\mathrm{S}, \mathrm{X}=\mathrm{F}, \mathrm{Cl}$ and Br 3-X, $\mathrm{Y}=\mathrm{CH}_{2}, \mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ and Ph

TheDiels-Alder reaction of 2,3-dimethylbuta-1,3-diene with 5-fluoroadamantane-2-thione (2-F) has been re-

[^0]ported to follow Cieplak's prediction. ${ }^{5}$ When frontier molecular orbital (FMO) theory is applied to this DielsAlder reaction, the diene functions as the donor, and the reaction is controlled by the HOMO (diene)-LUMO (dienophile) interaction. In other words, this is a normal Diels-Alder-type reaction. ${ }^{1 \mathrm{a}, 2 \mathrm{~d}, 6}$ On the other hand, 1,3dipolar cycloadditions of benzonitrile oxide with thiones 2, or terminal alkenes 3, are controlled mainly by the LUMO (dipole)-HOMO (dipolarophile) interaction (an inverse electron-demand type of reaction). Thus, 1,3dipolar cycloaddition reactions to $\mathbf{2}$ and $\mathbf{3}$ provide an important test of the transition-state hyperconjugation model because Cieplak's model stresses that, regardless of the type of reaction (nucleophilic, electrophilic, radical addition, etc.), the newly developing σ^{*} orbital should attract electron density with the same directional preference provided the transition states are electron deficient. ${ }^{3 a, 4 c}$ We report here our study of the 1,3-dipolar cycloaddition reactions of benzonitrile oxide with 5-substituted adamantane-2-thiones ($\mathbf{2}-\mathbf{X}$) and 2-methyleneadamantanes (3-X). We find that the favored approach is indeed syn as predicted, in all instances.

Results and Discussion

The reaction of thione 2-F with benzonitrile oxide generated in situ from benzohydroximoyl chloride (4) and

[^1]Table 1. Calculated ${ }^{\text {a }}$ and Observed ${ }^{{ }^{13} \mathrm{C}}$ Chemical Shifts of 5-Substituted 3^{\prime}-Phenyladamantane-2-spiro-5'-($\mathbf{1}^{\prime}, 4^{\prime}, 2^{\prime}$-oxathiazolines)

E-5-X

$\mathrm{X}=\mathrm{F}, \mathrm{Cl}$ and Br

	5-H	(E)-5-F	(Z)-5-F	(E)-5-CI	(Z)-5-CI	(E)-5-Br	(Z)-5-Br
$\mathrm{C}_{1}, \mathrm{C}_{3}$	39.34	42.02 (42.44)	41.75 (42.44)	42.11 (42.44)	41.98 (42.44)	42.79 (43.34)	$42.74 \text { (43.34) }$
		$\mathrm{J}=9.2$	$\mathrm{J}=9.2$				
C_{2}	112.28	109.39 (110.48)	109.93 (110.48)	109.28 (109.98)	109.67 (109.98)	109.17 (109.98)	$109.49 \text { (109.98) }$
$\mathrm{C}_{4}, \mathrm{C}_{9}$	37.27	38.31 (38.58)	41.49 (42.27)	43.04 (43.28)	46.54 (46.97)	44.74 (45.08)	48.00 (47.77)
		$\mathrm{J}=20.2$	$\mathrm{J}=20.2$				
C_{5}	26.83	$90.09 \text { (89.90) }$	90.54 (90.63)	64.84 (65.90)	65.08 (66.63)	61.00 (64.10)	61.00 (64.83)
		$J=186.8$	$\mathrm{J}=185.0$				
C_{6}	37.01	42.19 (42.01)	42.24 (42.01)	47.01 (46.71)	47.01 (46.71)	48.46 (48.51)	48.46 (48.51)
		$\mathrm{J}=16.5$	$\mathrm{J}=16.5$				
C_{7}	26.10	29.78 (29.93)	29.13 (29.20)	29.91 (29.93)	29.29 (29.20)	30.64 (30.83)	30.06 (30.10)
		$\mathrm{J}=9.2$	$\mathrm{J}=9.2$				
$\mathrm{C}_{8}, \mathrm{C}_{10}$	33.58	35.65 (35.47)	32.10 (31.78)	35.36 (34.97)	31.79 (31.28)	35.29 (34.97)	31.73 (31.28)
C_{3}	156.40	156.21	156.01	156.24	156.48	156.19	156.42
Ci_{i}	128.89	128.46	128.46	128.44	128.44	128.39	128.39
Co	128.58	128.70	128.72	128.70	128.70	128.69	128.69
C_{m}	127.58	127.63	127.68	127.65	127.65	127.63	127.63
C_{p}	130.62	130.91	130.96	130.93	130.93	130.93	130.93

${ }^{\text {a }}$ Calculated values are in parentheses. ${ }^{\text {b }}$ M easured with a Varian Unity 300 NMR spectrometer operated at 75.4 MHz and reported in δ units, $\mathrm{CDCl}_{3}(\delta 77.00)$. J is in Hz . In the parent compound $\mathbf{5 - H}$, the sulfur is understood to be syn to C_{8} and C_{10}.

Scheme 1

triethylamine in methylene chloride occurs smoothly at room temperature to give a 69:31 (GC ratio) mixture of E - and Z - adducts 5-F in 82\% yield after chromatography (Scheme 1). Both adducts are stable to the reaction conditions, and they are characterized as 5-fluoro-3'-phenyladamantane-2-spiro-5'-($\Delta^{2}-1^{\prime}, 4^{\prime}, 2^{\prime}$-oxathiazolines) on the basis of their mass and NMR spectroscopy. ${ }^{7}$ In all instances examined ($\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$), the major isomer was (E)-5-X, which results from syn attack of the nitrile oxide on 2-X (see Scheme 1). The configurational assignment of the epimers 5-X was based on the relative shielding power of oxygen vs sulfur directly "above" the flanking methylene groups. The shielding effect of an oxygen atom on these CH bonds in a series of spirocyanooxetanes ${ }^{8}$ was found to be 1.59 ± 0.17 ppm when the 1-X substituent was fluoro, chloro, bromo, or phenyl. On

[^2]the other hand, a sulfur atom was found to have a deshielding effect of 0.6 ppm in 5-fluorospiro[adaman-tane-2,2'-thiocyclohex-4'-ene]. Thus, C-4 and C-9 (identified by their ${ }^{19} \mathrm{~F}$ coupling), which are syn to the oxygen in the parent compound $\mathbf{5 - H}$, are determined to be shielded vs C-8 and C-10 by a margin of $\geq 2.2 \mathrm{ppm}$. Moreover, application of the ${ }^{13} \mathrm{C}$ NMR additivity scheme ${ }^{9}$ to the oxathiazolines furthermore led to carbon resonances correctly predicted to be within $\pm 0.4 \mathrm{ppm}$ if the major product is assumed to have the E-configuration, whereas deviations of several ppm are found when the opposite assumption is used (Table 1). Finally, the configuration of (Z)-5-F was established independently by means of an X-ray structural determination (see Figure 1). ${ }^{7}$

The reaction of benzonitrile oxide with 5 -substituted methyleneadamantanes 3-X was sluggish at room temperature but was accelerated by refluxing in THF for 24 h to give two isoxazolines 6-Xs in 72-88\% i solated yield (see Scheme 2). Again, these products were proven to bestableunder the reaction conditions; i.e, both products are formed in kinetically controlled processes. In all instances examined (where $\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, and Ph), the major isomer ($\sim 60: 40$ ratio as determined by both GC and ${ }^{1} \mathrm{H}$ NMR integration) has the Z configuration. It should be noted that the major product (Z)-6-X is still derived from syn attack of the nitrile oxide on 3-X. Strong NOE of the 4'-methylene hydrogens and the flanking pair at C-8 and C-10, but not at C-4 and C-9, confirmed the configuration of the major isomer to be (Z)-6-X. No traces of the regioisomers 7-X or $\mathbf{8 - X}$ were detected in the reactions of $\mathbf{2 - X}$ or $\mathbf{3 - X}$ with benzonitrile oxide, which is consistent with a previous observation of thione 2-H. ${ }^{2 d}$ Thus, the 1,3-dipolar cycloaddition reactions of adamantanethiones 2-X and methyleneadaman-

[^3] Chem. 1985, 23, 232.

Figure 1. ORTEP drawing of oxathiazoline Z-5-F.

Scheme 2

tanes 3-X with benzonitrile oxide are regiospecific. This is probably due to the steric interaction between the phenyl group and the bulky adamantyl group of $\mathbf{2}$ or $\mathbf{3}$ in the transition state.

7-X

An attempt to react nitrile oxide with adamantanone 1-H was unsuccessful even at high temperature and with a long reaction time. Kinetic studies ${ }^{2 a, b}$ of 1,3 -dipolar additions of nitrones to thiones revealed that the weakness of the $\mathrm{C}=\mathrm{S} \pi$ bond was not responsible for the high reaction rates; instead, the low HOMO-LUMO energy gap of the $\mathrm{C}=\mathrm{S} \pi$ bond was suggested to be the decisive factor. AM 1 calculations ${ }^{10}$ of the HOMO -LUMO energy of 1-3 reveal that all of the 1,3-dipolar reactions described here are LUMO (dipole)-HOMO (dipolarophile) controlled reactions, and the rates diminish in the order

[^4]$\mathrm{k}(\mathrm{C}=\mathrm{S})>\mathrm{k}\left(\mathrm{C}=\mathrm{CH}_{2}\right) \gg \mathrm{k}(\mathrm{C}=\mathrm{O})$. The 1,3-dipolar cycloaddition reaction of thione 2-F with benzonitrile oxide was also carried out in solvents with increasing polarity; they were varied from n-hexane ($\mathrm{E}_{\mathrm{T}}=30.9$) to methanol ($E_{T}=55.5$) to water ($E_{T}=63$). In all (14) solvents studied ($E_{T}=30.9-63$), the face selectivity was hardly affected; i.e, they all fall in the range of $64 \pm 4 \%$ in favor of (E)-5-F. The results argue against the involvement of zwitterionic intermediates in the reaction pathways and favor a concerted mechanism for the 1,3-dipolar cycloaddition reaction.

The present study provides strong support for the Cieplak transition-state hyperconjugation model: while the dipolarophiles 1-3 behave as electron donors in an inverse electron-demand-type 1,3-dipolar addition, the dienophiles 2 and 3 behave as electron acceptors in a normal Diels-Alder reaction. Nevertheless, both the diene (in a Diels-Alder reaction) and the dipole (in a 1,3dipolar cycloaddition) approach the trigonal carbon from the same direction antiparallel to the most electron-rich bonds. Although the involvement of electrostatic effects in face-selectivity is not excluded, claims to that effect have relied mainly on calculations. ${ }^{3 b, c}$ Ab initio and semiempirical calculations of the transition states for 1,3dipolar cycloaddition reactions of 5 -substituted adaman-tane-2-thiones and 2-methyleneadamantanes are now in progress and will be reported in due course. ${ }^{10}$ We are presently studying the electronic effect of para-substituted phenylnitrile oxides in 1,3-dipolar cycloaddition reactions.

Experimental Section

General Procedure for the Synthesis of 5-Substituted 3'-Phenyladamantane-2-spiro-5'-($\mathbf{1}^{\prime}, 4^{\prime}, 2^{\prime}$-oxathiazolines) 5-X. All 5-substituted 3^{\prime}-phenyladamantane-2-spiro-5^{\prime}-($1^{\prime}, 4^{\prime}, 2^{\prime}$-oxathiazolines) were prepared from the corresponding adamantane-2-thiones $\mathbf{2 - X}$ with a standard procedure ${ }^{2 d}$ described below for the fluoro derivative $(\mathbf{X}=\mathrm{F})$. Triethylamine $0.124 \mathrm{~g}(1.22 \mathrm{mmol})$ was added gradually at $0^{\circ} \mathrm{C}$ to a stirred solution of $\mathbf{2 - F}(0.15 \mathrm{~g}, 0.82 \mathrm{mmol})$ and benzohydroximoyl chloride ($0.19 \mathrm{~g}, 1.22 \mathrm{mmol}$) in 10 mL of dry dichloromethane. After being stirred for 3 h at rt , the mixture was poured into 15 mL of water. Following removal of the organic solvent, the solid residue was purified on a silica gel column by elution with n-hexane/dichloromethane gradient to give two isomeric adducts (E)- and (Z)-5-F. The isolated yields based on converted starting materials are as fol lows: 5-F 82\%, 5-CI 78%, and $5-\mathrm{Br} 75 \%$. For all ${ }^{13} \mathrm{C}$ NMR spectra data, see Table 1 ; all ${ }^{1} \mathrm{H}$ NMR spectra were measured at 300 MHz in CDCl_{3}.
(E)-5-F: col orless solid; mp 91.5-92.5 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 1.72-2.0$ (m, 8 H), 2.0-2.3 (m, 1 H), 2.4-2.6 (bs, 2 H), 2.7 (bs, 2 H), 7.37.5 (m, 3H), 7.6-7.7 (m, 2 H); MS (EI, m/z) 303 (M+ ${ }^{+} 81$), 184 (59), 168 (11), 135 (100), 91 (18), 79 (16); HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ONSF}$ 303.1094, found 303.1095.
(Z)-5-F: colorless solid; mp $82.5-83^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 1.5-1.7$ (m, 2 H), 1.9-2.2 (m, 6H), 2.2-2.4 (m, 3H), 2.65 (bs, 2H), 7.3-7.5 (m, 3 H), 7.6-7.7 (m, 2 H); MS (EI, m/z) 303 (M+, 56), 184 (29), 168 (9), 135 (100), 91 (8), 79 (8); HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{18}$ ONSF 303.1094, found 303.1089.
(E)-5-CI: colorless solid; mp $147-148{ }^{\circ} \mathrm{C} ; \delta_{H} 1.75-2.2$ (m, 9 H), 2.62 (bs, 2 H), 2.65-2.80 (m, 2 H), 2.65 (bs, 2 H), $7.3-$ 7.5 (m, 3 H), 7.60-7.75 (m, 2 H); MS (EI, m/z) 321 (M ${ }^{+}+2$, 13), 319 (${ }^{+}, 33$), 200 (26), 184 (8), 135 (100), 91 (14), 79 (17); HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{18}$ ONSCI 319.0799, found 319.0789. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ONSCI}: \mathrm{C}, 63.84 ; \mathrm{H}, 5.67$; N, 4.38; S, 10.03. Found: C, 64.02; H, 5.6; N, 4.43; S, 10.12.
(Z)-5-CI could not be isolated; however, the ${ }^{13} \mathrm{C}$ and GCMS spectra can be obtained from the (E) and (Z)-5-CI mixture: MS (EI, m/z) $321\left(\mathrm{M}^{+}+2,5\right), 319\left(\mathrm{M}^{+}, 14\right), 200(19)$, 184 (13), 135 (100), 91 (29), 79 (40).

Table 2. Calculated ${ }^{\text {a }}$ and Observed ${ }^{13} \mathrm{C}$ Chemical Shifts of 5-Substituted 3'-Phenyl-4'-hydrospiro(adamantane-2:5'- Δ^{2}-isoxazolines)

	6-H	(Z)-6-F	(E)-6-F	(Z)-6-CI	(E)-6-CI	(Z)-6-Br	(E)-6-Br	(Z)-6-Ph	(E)-6-Ph
$\mathrm{C}_{1}, \mathrm{C}_{3}$	36.90	39.86 (40.00)	39.30 (40.00)	39.96 (39.00)	39.71 (39.00)	40.72 (40.90)	40.56 (40.90)	37.56 (37.50)	37.41 (37.50)
		$\mathrm{J}=10.5$	$\mathrm{J}=10.1$						
C_{2}	91.39	89.19 (89.59)	89.53 (89.59)	88.94 (89.09)	89.24 (89.09)	88.86 (89.09)	89.10 (89.09)	90.42 (90.49)	90.75 (90.49)
$\mathrm{C}_{4}, \mathrm{C}_{9}$	33.25	38.24 (38.25)	40.04 (40.57$J=18.9$	43.01 (42.95)	45.21 (45.27)	44.49 (44.75)	46.73 (47.07)	38.90 (38.64)	40.91 (40.97)
		$\mathrm{J}=19.0$							
C_{5}	26.49	90.96 (90.29)	91.06 (90.68)	66.10 (66.29)	66.11 (66.68)	62.78 (64.49)	62.64 (64.88)	34.94 (34.19)	35.37 (34.58)
		$\mathrm{J}=184.3$	$\mathrm{J}=184.4$						
C_{6}	37.25	42.34 (42.25)	42.41 (42.25)	47.23 (46.95)	47.30 (46.95)	48.74 (48.75)	48.80 (48.75)	42.38 (42.75)	43.21 (42.75)
		$\mathrm{J}=17.9$	$\mathrm{J}=16.7$						
C_{7}	26.88	$\begin{aligned} & 29.78(29.98) \\ & \quad=9.9 \end{aligned}$	$\begin{aligned} & 29.39(29.59) \\ & \quad=9.7 \end{aligned}$	29.97 (28.98)	29.70 (28.59)	30.75 (30.88)	30.54 (30.48)	27.50 (27.48)	27.12 (27.09)
$\mathrm{C}_{8}, \mathrm{C}_{10}$	35.57	$\begin{aligned} & 33.92(33.77) \\ & \mathrm{J}=1.7 \end{aligned}$	$\begin{aligned} & 31.70(31.45) \\ & \mathrm{J}=1.8 \end{aligned}$	33.66 (33.27)	31.41 (30.95)	33.63 (33.27)	31.38 (30.95)	34.75 (34.69)	32.41 (32.35)
C_{3}	156.07	156.01	156.16	156.03	156.14	156.02	156.12	156.13	156.13
C_{4}	43.84	43.04	44.11	43.12	44.06	43.22	44.04	43.45	43.93
Ci_{i}	130.41	129.92	129.91	129.94	129.91	129.92	129.88	130.30	130.27
C_{0}	128.58	128.67	128.68	128.68	128.70	126.68	128.70	128.64	128.64
C_{m}	126.31	126.35	126.36	126.36	126.38	126.36	126.38	126.36	126.34
C_{p}	129.64	129.92	129.95	129.94	129.97	129.98	129.98	129.76	129.76
$\mathrm{Ci}^{\text {' }}$								149.97	149.48
C_{0}								124.94	124.79
C_{m}								128.16	128.28
$\mathrm{Cp}_{p^{\prime}}$								125.74	125.95

${ }^{\text {a }}$ Calculated values are in parentheses. ${ }^{\mathrm{b}}$ Measured by means of a Bruker DRX-300 NMR spectrometer operating at 75.4 MHz and reported in δ units, $\mathrm{CDCl}_{3}(\delta 77.00)$. J is in Hz . In the parent compound $\mathbf{6 - H}$, the oxygen is understood to be syn to C_{4} and C_{9}.
(E) $\mathbf{~ - 5 - B r}$: colorless solid; $\mathrm{mp} 181-182{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 1.8-2.0(\mathrm{~m}, 4$ H), 2.12 (bs, 1 H), 2.15-2.30 (m, 2 H), 2.38 (bs, 2 H), 2.58 (bs, $2 \mathrm{H}), 2.85-3.00(\mathrm{~m}, 2 \mathrm{H}), 7.3-7.5(\mathrm{~m}, 3 \mathrm{H}), 7.60-7.75(\mathrm{~m}, 2$ H); MS (EI, m/z) 365 ($\mathrm{M}^{+}+2,53$), 363 (${ }^{+}$, 51), 246 ($\mathrm{M}^{+}+2$ - PhCNO, 22), 244 (M ${ }^{+}$- PhCNO, 21), 165 (40), 135 (100), 91 (28), 79 (36); HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ONS}^{79} \mathrm{Br} 363.0293$, found 363.0291. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ONSBr}: \mathrm{C}, 56.05 ; \mathrm{H}$, 4.98; N, 3.85. Found: C, $56.02 ; \mathrm{H}, 4.85 ; \mathrm{N}, 3.87$.
(Z)-5-Br: colorless solid; mp 158-158.5 ${ }^{\circ} \mathrm{C}$; $\delta_{H} 1.65-1.75$ $(\mathrm{m}, 2 \mathrm{H}), 2.10(\mathrm{bs}, 1 \mathrm{H}), 2.3-2.6(\mathrm{~m}, 10 \mathrm{H}), 7.35-7.50(\mathrm{~m}, 3$ H), 7.65-7.70 (m, 2 H); MS (EI, m/z) 365 (${ }^{+}+2,27$), 363 $\left(M^{+}, 26\right), 246\left(M^{+}+2-\operatorname{PhCNO}, 9\right), 244\left(M^{+}-\right.$PhCNO, 9), 165 (17), 135 (100), 91 (13), 79 (18); HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ONS}^{79} \mathrm{Br} 363.0293$, found 363.0297.

General Procedure for the Synthesis of 5-Substituted 3'-Phenyl-4'-hydrospiro[adamantane-2:5'- $\Delta^{\mathbf{2}}$-i soxazolines] 6-X. (E)- and (Z)-6-X were synthesized by the use of a procedure similar to that of Zwanenburg et al. ${ }^{12}$ An excess of triethylamine (1.5 mol equiv) was added to a well-stirred solution of the methyleneadamantanes 3-X (100 mg) and benzohydroximoyl chloride (1.5 mol equiv) in anhydrous THF $(10 \mathrm{~mL}$). The mixture was stirred at reflux for 24 h , diluted with dichloromethane, washed with water, and dried with MgSO_{4}. After filtration and sol vent evaporation, the residue was purified on a silica gel column with n-hexane/dichloromethane to give two isomeric adducts (E)- and (Z)-6-X. The isolated yields based on converted starting materials are as follows: 6-F 72\%, 6-CI 81\%, 6-Br 76\%, and 6-Ph 88\%. For all ${ }^{13} \mathrm{C}$ NMR spectra data see Table 2.
(Z)-6-F: colorless solid; mp 91-93 ${ }^{\circ} \mathrm{C}$; $\delta_{H} 1.62-1.85$ ($\mathrm{m}, 6$ H), 1.94 (bs, 2 H), 2.17 (bs, 3 H), 2.45-2.60 (m, 2 H), 3.17 (s, $2 \mathrm{H}), 7.35-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.55-7.72$ (m, 2 H); MS (EI, m/z) 285 ($\mathrm{M}^{+}, 100$), 268 (65), 117 ($\mathrm{M}^{+}-\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{OF}, 31$), 91 (20), 77 (40); HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{20}$ ONF 285.1530, found 285.1529.

[^5]Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ONF}: \mathrm{C}, 75.76 ; \mathrm{H}, 7.06 ; \mathrm{N}, 4.91$. Found: C, 75.52; H, 6.93; N, 5.03.
(E)-6-F: col orless solid; mp $142-143^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 1.52$ (bs, 1 H), 1.56 (bs, 1 H), 1.88-2.10(m, 6H), 2.15-2.35 (m,5H), 3.21 (s, 2 H), 7.32-7.50 (m, 3H), 7.60-7.75 (m, 2 H); MS (EI, m/z) 285 ($\mathrm{M}^{+}, 100$), 268 (38), 117 ($\mathrm{M}^{+}-\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{OF}, 33$), 91 (12), 77 (28); HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ONF}$ 285.1530, found 285.1523. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ONF}: \mathrm{C}, 75.76 ; \mathrm{H}, 7.06 ; \mathrm{N}, 4.91$. Found: C, 75.55; H, 7.03; N, 5.09.
(Z)-6-CI: colorless solid; mp $146-147^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 1.65-1.90$ (m, 4 H), 1.99 (bs, 1 H), 2.03 (bs, 1 H), 2.05-2.25 (m, 5H), 2.71 (bs, 1 H), 2.75 (bs, 1 H$), 3.16$ (s, 2 H), 7.35-7.45 (m, 3H), 7.60$7.75(\mathrm{~m}, 2 \mathrm{H})$; MS (EI, m/z) $303\left(\mathrm{M}^{+}+2,32\right), 301\left(\mathrm{M}^{+}, 100\right)$, 286 (15), 284 (44), 266 ($\mathrm{M}^{+}-{ }^{35} \mathrm{Cl}, 7$), 117 (40), 91 (58), 77 (92); HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ON}^{35} \mathrm{Cl}$ 301.1235, found 301.1237. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ONCl}: \mathrm{C}, 71.63 ; \mathrm{H}, 6.68 ; \mathrm{N}, 4.64$. Found: C, 71.54; H, 6.64; N, 4.69.
(E)-6-Cl: colorless solid; mp $122-123^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 1.62(\mathrm{bs}, 1 \mathrm{H})$, 2.10-2.35 (m, 12 H), 3.22(s, 2H), 7.35-7.45 (m, 3H), 7.60$7.70(\mathrm{~m}, 2 \mathrm{H})$; MS (EI, m/z) $303\left(\mathrm{M}^{+}+2,8\right), 301\left(\mathrm{M}^{+}, 24\right), 286$ (4), 284 (12), 117 (32), 91 (47), 77 (100); HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ON}{ }^{35} \mathrm{Cl}$ 301.1235, found 301.1230. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ONCl}: \mathrm{C}, 71.63 ; \mathrm{H}, 6.68 ; \mathrm{N}, 4.64$. Found: C, $71.54 ; \mathrm{H}$, 6.66; N, 4.69.
(Z)-6-Br: colorless solid; mp 152-154 ${ }^{\circ} \mathrm{C}$; $\delta_{H} 1.60-1.95$ (m, $4 \mathrm{H}), 2.17$ (bs, 3 H$), 2.24$ (bs, 1 H$), 2.38$ (bs, 1 H$), 2.91$ (bs, 1 H), 2.95 (bs, 1 H), 3.14 (s, 2 H), $7.35-7.50$ (m, 3 H), 7.65-7.72 (m, 2 H); MS (EI, m/z) $347\left(\mathrm{M}^{+}+2,68\right), 345\left(\mathrm{M}^{+}, 69\right), 330(8)$, 328 (8), 266 ($\mathrm{M}^{+}-{ }^{79} \mathrm{Br}, 100$), 117 ($\mathrm{M}^{+}-\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{OBr}, 31$), 91 (43), 77 (48); HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ON}^{79} \mathrm{Br} 345.0729$, found 345.0731. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ONBr}: \mathrm{C}, 62.44 ; \mathrm{H}, 5.82 ; \mathrm{N}$, 4.04. Found: C, 62.39; H, 5.87; N, 4.04 .
(E)-6-Br: colorless solid; mp 106-108 ${ }^{\circ} \mathrm{C}$; $\delta_{H} 1.63(\mathrm{bs}, 1 \mathrm{H})$, 1.67 (bs, 1 H$), 2.02-2.16(\mathrm{~m}, 3 \mathrm{H}), 2.20-2.50(\mathrm{~m}, 8 \mathrm{H}), 3.22(\mathrm{~s}$, $2 \mathrm{H}), 7.30-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.60-7.70(\mathrm{~m}, 2 \mathrm{H})$; MS (EI, m/z) $347\left(\mathrm{M}^{+}+2,90\right), 345\left(\mathrm{M}^{+}, 91\right), 330(14), 328(12), 266\left(\mathrm{M}^{+}-\right.$ $\left.{ }^{79} \mathrm{Br}, 90\right), 117\left(\mathrm{M}^{+}-\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{OBr}, 42\right), 91$ (73), 77 (100); HRMS
calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ON}^{79} \mathrm{Br} 345.0729$, found 345.0724. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ONBr}: \mathrm{C}, 62.44 ; \mathrm{H}, 5.82 ; \mathrm{N}, 4.04$. Found: C, 62.35; H, 5.89; N, 4.01.
(Z)-6-Ph: colorless solid; mp 130-132 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 1.75-2.05$ (m, 8 H), 1.96 (bs, 2 H), 2.18-2.28 (m, 3 H), 3.21 (s, 1 H), 7.397.42 (m, 3 H), 7.65-7.69 (m, 2 H); MS (EI, m/z) 343 (M+, 100), 326 (44), 155 (25), 117 (32), 91 (39), 77 (33); HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{ON}$ 343.1938, found 343.1928. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{ON}: \mathrm{C}, 83.93 ; \mathrm{H}, 7.34 ; \mathrm{N}, 4.08$. Found: C, 83.96; H, 7.34; N, 4.07.
(Z)-6-Ph: colorless solid; mp $125.5-127^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 1.52-1.56$ (m, 6 H), 1.96 (bs, 2 H), 2.18-2.28(m,3H), 3.21 (s, 1 H), 7.397.42 (m, 3 H), 7.65-7.69 (m, 2 H); MS (EI, m/z) 343 (M ${ }^{+}, 100$), 326 (40), 155 (18), 117 (18), 91 (28), 77 (27); HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{ON}$ 343.1938, found 343.1938. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{ON}: \mathrm{C}, 83.93 ; \mathrm{H}, 7.34 ; \mathrm{N}, 4.08$. Found: C, 83.84; H, 7.31; N, 4.08.

X-ray Structure Analysis of (Z)-5-F. A col orless prism crystal of $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ONSF}$ was crystallized from 30% methylene chloride in hexanes. Its structure was determined by means of single-crystal X-ray analysis on a Rigaku AFC6S diffractometer with graphite-monochromated MoK $\alpha(\lambda=0.71069 \AA$) radiation at $296 \pm 1 \mathrm{~K}$, with an ω - 2θ type scan at $16^{\circ} / \mathrm{min}$ (in
$\omega)$. The crystals are C-centered monoclinic, with space group $C 2 / c$ (15) and unit cell dimensions $a=19.454$ (4) $\AA \AA, b=6.635(5)$ $\AA, \mathrm{C}=24.956(4) \AA, \beta=111.30(2)^{\circ}, \mathrm{V}=3001(1) \AA^{3}, \mathrm{Z}=8, \rho_{\text {calcd }}$ $=1.343 \mathrm{~g} \mathrm{~cm}^{-3}$, crystal size $(\mathrm{mm}) 0.33 \times 0.41 \times 0.46, \mu(\mathrm{MoK} \alpha)$ $=2.24 \mathrm{~cm}^{-1}, \mathrm{~F}(000)=1280.00,2554$ reflections, 2467 unique reflections, 1403 with I > $3.00 \sigma(\mathrm{I})$ and with 190 variable parameters. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included but not refined. The model was finally refined by the full-matrix least-squares methods with weight $\omega=1 /\left[\sigma^{2}\left(\mathrm{~F}_{0}\right)\right]$ to final R values of 0.048 and Rw $=0.037$ (for details, see the Supporting Information). ${ }^{13}$

Acknowledgment. We thank Professor T.-J . Lu for valuable suggestions. This work was supported at NCTU by the National Science Council of the Republic of China (Grant NSC-86-2113-M-002-004).

J 09703717

[^6]
[^0]: + Presented at the 1996 International Symposium on Organic Reactions, Sendai, J apan, Book of abstracts, IB11.
 \ddagger National Chiao Tung University.
 § National Sun Yat-Sen University.
 ${ }^{\perp}$ State University of New York.
 ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, J une 15, 1997.
 (1) F or reviews see: (a) Huisgen, R. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, 1984; Vol. 1, pp 1-176. (b) Caramella, P.; Grünanger, P. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New Y ork, 1984; Vol. 1, pp 291-392. (c) NitrileOxides, Nitrones, and Nitronates in Organic Synthesis; Torssell, K. B. G., Ed.; VCH: New York, 1988. (d) Carruthers, W. Cycloaddition Reactions in Organic Synthesis; Pergamon Press: Oxford, 1990; pp 269-367.

[^1]: (2) (a) Huisgen, R.; Fisera, L.; Giera, H.; Sustmann, R. J . Am. Chem. Soc. 1995, 117, 9671 . (b) Fisera, L.; Huisgen, R.; Kalwinsch, I.; Langhals, E.; Li, X. Mloston, G.; Polborn, K.; Rapp, J.; Sicking, W.; Sustmann, R. Pure Appl. Chem. 1996, 68, 789. (c) Metzner, P. Pure Appl. Chem. 1996, 68, 863. (d) K atada, T.; Eguchi, S.; Sasaki, T. J . Chem. Soc., Perkin Trans. 1 1984, 2641. (e) Black, D. St. C.; Watson, K. G. Aust. J . Chem. 1973, 26, 2491.
 (3) (a) Bodepudi, V. R.; le N oble, W. J . J . Org. Chem. 1994, 59, 3265; 1991, 56, 2001 and references cited therein. (b) Adcock, W.; Cotton, J.; Trout, N. A. J. Org. Chem. 1994, 59, 1867 and references cited therein. (c) Coxon, J. M.; Houk, K. N.; Luibrand, R. T. J . Org. Chem. 1995, 60, 418.
 (4) (a) Cieplak, A. S.; Tait, B. D.; J ohnson, C. R. J . Am. Chem. Soc. 1989, 111, 8447. (b) Cieplak, A. S. J. Am. Chem. Soc. 1981, 103, 4540. (c) J ohnson, C. R.; Tait, B.; Cieplak, A. S. J. Am. Chem. Soc. 1987, 109, 5875.
 (5) (a) Chung, W.-S.; Turro, N. J .; Srivastava, S.; Li, H.; Ie Noble, W. J. J. Am. Chem. Soc. 1988, 110, 7882. (b) Katada, T.; Eguchi, S.; Sasaki, T. J. Org. Chem. 1986, 51, 314. (c) Li, H.; Silver, J. E.; Watson, W. H.; Kashyap, R. P.; le Noble, W. J. J. Org. Chem. 1991, 56, 5932.
 (6) (a) For an excellent review see: Houk, K. N.; Gonzalez, J.; Li, Y. Acc. Chem. Res. 1995, 28, 81. (b) Sustmann, R. Tetrahedron Lett. 1971, 2717, 2721.

[^2]: (7) All compounds mentioned in this paper have been completely characterized; see the Experimental Section. The final structural assignment of oxathiazolines was not straightforward. We were initially misled by the X-ray crystal structure of (Z)-5-Br, which crystallized from a 95:5 mixture of (E)-:(Z)-5-Br (due to poor separation). F ortunately, (Z)-5-F can be separated in pure form by means of column chromatography, and this finally revealed the fact that only the Z-form of oxathiazol ine produced single crystals.
 (8) (a) Chung, W.-S.; Liu, Y.-D.; Wang, N.-J . J . Chem. Soc., Perkin Trans. 2 1995, 581. (b) Chung, W.-S.; Turro, N. J.; Srivastava, S.; le Noble, W. J. J . Org. Chem. 1991, 56, 5020.

[^3]: (9) Srivastava, S.; Cheung, C.-K.; Ie Noble, W. J. Magn. Reson.

[^4]: (10) The HOMO energies for the dipolarophiles are as follows: $\mathbf{2}=$ $-8.49 \mathrm{eV} ; \mathbf{3}=-9.60 \mathrm{eV} ; \mathbf{1}=-10.02 \mathrm{eV}$. Details of the energy and coefficient for frontier orbitals obtained by means of AM 1 calculations will be published in a later paper. We thank Prof. J.-H. Yu of NTHU for the calculations.
 (11) Reichardt, C. Angew. Chem., Int. Ed. Engl. 1979, 18, 98.

[^5]: (12) Bonini, B. F.; MacCagnani, G.; Mazzanti, G.; Thijs, L.; Ambrosius, H. P. M. M.; Zwanenburg, B. J . Chem. Soc., Perkin Trans. 1 1977, 1468.

[^6]: (13) The author has deposited atomic coordinates for (Z)-5-F with the Cambridge Crystallographic Data Centre. The coordinates can be obtained, on request, from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK.

